3 More about Graphs of **Functions**

Review Exercise 3 (p. 3.5)

1. (a)
$$f(3) = 2(3)^2 - 3(3) - 4$$

 $= 5$
(b) $f \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}^2 - 3 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}^2 - 4$
 $= -5$
2. (a) $g(a - 1) = (a - 1)^2 + 4(a - 1)$
 $= a^2 - 2a + 1 + 4a - 4$
 $= \underline{a^2 + 2a - 3}$

$$g(2b+1) = (2b+1)^{2} + 4(2b+1)$$

(b)
$$= 4b^{2} + 4b + 1 + 8b + 4$$
$$= 4b^{2} + 12b + 5$$

3. (a)
$$\therefore$$
 $f(2) = 6$
 $k(2) - 2 = 6$
 \therefore $2k = 8$
 $k = 4$

(b) From (a), we have
$$f(x) = 4x - 2$$

 $\therefore \quad f(t) = -6$
 $4t - 2 = -6$
 $\therefore \quad 4t = -4$
 $t = -1$

4. (a) The coordinates of
$$Q = (3, 2 + 2) = (3, 4)$$

- **(b)** The coordinates of R = (3, -2)
- The coordinates of Q = (-(-5+4), 2) = (1, 2)5.
- Let (x, y) be the coordinates of P. 6. The coordinates of Q = (x - 5, -y) = (4, -7)
 - x 5 = 4÷ x = 9-y = -7and 7

$$y =$$

$$\therefore \quad \text{The coordinates of } P = \underline{(9, 7)}$$

7. (a), (b)

Activity

Activity 3.1 (p. 3.41)
1.
$$g(x) = f(x) + 3$$

 $= x^{2} + 3$

4. Yes

- 5. The graph of y = f(x) + 3 can be obtained by translating the graph of y = f(x) <u>upwards</u> by <u>3</u> units.
- 6. (a) Yes
 - **(b)** The graph of y = f(x) 2 can be obtained by translating the graph of y = f(x) downwards by 2 units.

Activity 3.2 (p. 3.45)

1.
$$g(x) = f(x+1)$$

= $(x+1)^2$

2.	x	-4	-3	-2	-1	0	1	2	3
	f(x)		9	<u>4</u>	<u>1</u>	0	1	<u>4</u>	<u>9</u>
	g(x)	9	4	1	<u>0</u>	<u>1</u>	4	<u>9</u>	

NSS Mathematics in Action (2nd Edition) 6A Full Solutions

4. Yes

- 5. The graph of y = f(x + 1) can be obtained by translating the graph of y = f(x) <u>leftwards by 1</u> unit.
- 6. (a) Yes
 - **(b)** The graph of y = f(x 2) can be obtained by translating the graph of y = f(x) rightwards by 2 units.

Maths Dialogue

Maths Dialogue (p. 3.59)

 $g(x) = 4x^2 - 4$

1.

- $=4(x^{2} 1)$ =4 f (x)
- ... The graph of y = f(x) is enlarged along the *y*-axis to 4 times the original to give the graph of y = g(x).
- :. The graph of y = g(x) can be obtained by Ken's approach.

Suppose the graph of y = g(x) can be obtained by Angel's approach.

i.e.
$$g(x) = f(kx)$$
 for some constant *k*.
 $g(x) = 4x^2 - 4$

x)

$$(kx)^{2} - 1 = 4x^{2} - 4$$

$$k^{2}x^{2} = 4x^{2} - 3$$

$$k^{2} = 4 - \frac{3}{x^{2}}$$

$$k = \pm \sqrt{4 - \frac{3}{x^{2}}}, \text{ which are not constant}$$

:. The graph of y = g(x) cannot be obtained by Angel's approach.

2.
$$g(x) = x^{2} + x$$
$$= (-x)^{2} - (-x)^{2} - (-x)^{2} + (-x)^{2}$$

:. The graph of y = g(x) can be obtained by reflecting the graph of y = f(x) about the *y*-axis.

$$g(x) = x^{2} + x$$

= x(x + 1)
= (x + 1 - 1)(x + 1)
= (x + 1)^{2} - (x + 1)
= f(x + 1)

... The graph of y = g(x) can be obtained by translating the graph of y = f(x) leftwards by 1 unit.

Classwork

(b)

(a) $y = \sin \theta$ $y = \sin \theta$ $y = \sin \theta$ $y = \cos \theta$ $y = \tan \theta$ $x = -\pi$ $y = -\pi$ $y = -\pi$

Classwork (p. 3.15) 1. Function Maximum Minimum <u>value</u> <u>value</u> (a) no max. value -4 $y = \frac{x^2}{4} - 4$ (b) $y = \sin x$: : 1 (c) $y = \cos x$ 2. **Period** Graph of :

- (a) Graph of : 360° $y = \sin x$ (b) Graph of : 360°) $y = \cos x$
- 3. The graphs of $y = \frac{x^2}{4} 4$ and $y = \cos x$ show

reflectional symmetry about the *y*-axis.

The domain of the function

$$=\log_{\frac{1}{10}} x$$
 is all positive

real numbers, while the domain of other functions are <u>all real</u>

<u>numbers</u>.

4.

Classwork (p. 3.43)

- (a) \therefore The graph of y = g(x) is obtained by translating the graph of $y = x^2 + 2x + 1$ <u>upwards</u> by <u>2</u> units. \therefore The algebraic representation of g(x) is $g(x) = x^2 + 2x + 3$.
- (b) ∵ The graph of y = h(x) is obtained by translating the graph of y = x² + 2x + 1 downwards by 3 units.
 ∴ The algebraic representation of h(x) is h(x) = x² + 2x 2.

Classwork (p. 3.47)

(a) \therefore The graph of y = g(x) is obtained by translating the

graph of $y = x^2 - x + 1$ <u>rightwards</u> by <u>2</u> units. The algebraic representation of g(x) is

$$g(x) = (x - 2)^{2} - (x - 2) + 1$$
$$= x^{2} - 4x + 4 - x + 2 + 1$$
$$= x^{2} - 5x + 7$$

(b) ∵ The graph of y = h(x) is obtained by translating the graph of y = x² - x + 1 <u>leftwards</u> by <u>3</u> units.
 ∴ The algebraic representation of h(x) is

$$h(x) = (x + 3)^{2} - (x + 3) + 1$$

= x² + 6x + 9 - x - 3 + 1
= x² + 5x + 7

Classwork (p. 3.49)

1.

:..

NSS Mathematics in Action (2nd Edition) 6A Full Solutions

2. (a)
$$g(x) = -(x^2 - 2x + 5)$$

= $-x^2 + 2x - 5$

(b)
$$g(x) = (-x)^2 - 2(-x) + 5$$

= $x^2 + 2x + 5$

Classwork (p. 3.54) $y = x^2 - x$ $y = \frac{x^2 - x}{2}$ C (a) $\left(\frac{1}{4}\right)$ 12 $y = 1.5 \sin x$ 1.5 1 $y = \sin x$ 0 60° 180 -1 --1.5 -(b) Classwork (p. 3.57) $y = (2x)^2 - 2x$ $|y = x^2 - x$ 0 $\left(\frac{1}{4},-\frac{1}{4}\right)$ (a) $\left(\frac{1}{2}, -\frac{1}{4}\right)$ $y = \sin \frac{x}{2}$ $y = \sin x$ 0 54 20 18 -1 (b)

Quick Practice

Quick Practice 3.1 (p. 3.7) The required graph is:

Quick Practice 3.2 (p. 3.10) (a) The required graph is:

(b) The required graph is:

Quick Practice 3.3 (p. 3.11) The required graph is:

Quick Practice 3.4 (p. 3.20) Draw the horizontal line y = -1 on the graph of

The two graphs intersect at x = -3.8 and x = 0.8. ...

.:. The solutions of - x^2 - 3x + 2 = -1 are x = -3.8 or 0.8.

Quick Practice 3.5 (p. 3.21)

- (a) Draw the horizontal line y = 1.5 on the graph of $y = 2x^3 + 3x^2 + 1$.
 - The two graphs intersect at x = -1.4, x = -0.5 and ÷.: x = 0.4.
 - The solutions of $2x^3 + 3x^2 + 1 = 1.5$ are x = -1.4, *.*... -0.5 or 0.4.
- **(b)** Draw the horizontal line y = 2 on the graph of $y = 2x^3 + 3x^2 + 1$.
 - ·.· The two graphs intersect at x = -1.0 and x = 0.5.
 - The solutions of $2x^3 + 3x^2 + 1 = 1.5$ are x = -1.0.... or 0.5.

Quick Practice 3.6 (p. 3.23)

 $5\log_2 x = 8$ (a)

$$\log_2 x = 1.6$$

Draw the horizontal line y = 1.6 on the graph of $y = \log_2 x$.

The two graphs intersect at x = 3.0.

The solution of $5\log_2 x = 8$ is x = 3.0.

 $2\log_2 x + 3 = 1$

(b)

$$2\log_2 x = -2$$

$$\log_2 x = -1$$

Draw the horizontal line y = -1 on the graph of $y = \log_2 x$.

- The solution of $2\log_2 x + 3 = 1$ is x = 0.5.

Quick Practice 3.7 (p. 3.30)

Draw the horizontal line y = 9 on the graph of $y = -2x^2 - 8x + 3$.

The two graphs intersect at x = -3 and x = -1. For the range -3 < x < -1, the corresponding part of the graph of $y = -2x^2 - 8x + 3$ lies above the line y = 9. \therefore The solutions of $-2x^2 - 8x + 3 > 9$ are -3 < x < -1.

Quick Practice 3.8 (p. 3.31)

- (a) Draw the horizontal line y = 2 on the graph of y = 4^x. The two graphs intersect at x = 0.5. For the range x ≥ 0.5, the corresponding part of the graph of y = 4^x lies on or above the line y = 2.
 - $\therefore \quad \text{The solutions of } 4^x \ge 2 \text{ are } x \ge 0.5.$
- (b) Draw the horizontal line y = -0.5 on the graph of $y = 4^x$. The two graphs do not intersect, and the whole graph of $y = 4^x$ lies above the line y = -0.5.
 - \therefore The solutions of $4^x \ge -0.5$ are all real values of *x*.

Quick Practice 3.9 (p. 3.33)

(a) Draw the horizontal line y = 12 on the graph of $y = x^3 - x^2 - 8x + 10$. The two graphs intersect at x = -2.2, x = -0.3 and

The two graphs intersect at x = -2.2, x = -0.3 and x = 3.5. For the ranges $-2.2 \le x \le -0.3$ and $x \ge 3.5$, the corresponding parts of the graph of $y = x^3 - x^2 - 8x + 10$ lie on or above the line y = 12.

:. The solutions of $x^3 - x^2 - 8x + 10 \ge 12$ are -2.2 $\le x \le -0.3$ or $x \ge 3.5$. (b) Draw the horizontal line y = -2 on the graph of $y = x^3 - x^2 - 8x + 10$. The two graphs intersect at x = -3 and x = 2. For the range $x \ge -3$, the corresponding part of the graph of $y = x^3 - x^2 - 8x + 10$ lies on or above the line y = -2. ∴ The solutions of $x^3 - x^2 - 8x + 10 \ge -2$ are $x \ge -3$.

Quick Practice 3.10 (p. 3.35)

(a)
$$2 \sin x + 1 < 0$$

 $2 \sin x < -1$

sin *x* < - 0.5

Draw the horizontal line
$$y = -0.5$$
 on the graph of $y = \sin x$.

The two graphs intersect at $x = 210^{\circ}$ and $x = 330^{\circ}$. For the range $210^{\circ} < x < 330^{\circ}$, the corresponding part of the graph of $y = \sin x$ lies below the line y = -0.5. \therefore For $0^{\circ} < x < 360^{\circ}$, the solutions of $2 \sin x + 1 < 0$ are

For $0^{\circ} \le x \le 360^{\circ}$, the solutions of $2 \sin x + 1 \le 0$ are $210^{\circ} \le x \le 330^{\circ}$.

$$2 \sin x + 3 < 5$$

(b) $2\sin x < 2$

sin *x* < 1

Draw the horizontal line y = 1 on the graph of $y = \sin x$.

The two graphs intersect at $x = 90^{\circ}$. For the ranges $0^{\circ} \le x \le 90^{\circ}$ and $90^{\circ} \le x \le 360^{\circ}$, the corresponding parts of the graph of $y = \sin x$ lie below the line y = 1.

... For $0^{\circ} \le x \le 360^{\circ}$, the solutions of $2 \sin x + 3 < 5$ are $0^{\circ} \le x < 90^{\circ}$ or $90^{\circ} < x \le 360^{\circ}$.

Quick Practice 3.11 (p. 3.44)

Quick Practice 3.12 (p. 3.45)

 $g(x) = x^2 + 3$

$$=(x^2 - 8) + 11$$

$$= f(x) + 11$$

 \therefore The graph of y = f(x) is translated upwards by 11 units.

Quick Practice 3.13 (p. 3.48)

The graph of $y = \sin (x - 90^\circ)$ is obtained by translating the graph of $y = \sin x$ rightwards by 90°.

Quick Practice 3.14 (p. 3.49)

(a) The vertices of the graphs of y = f(x) and y = g(x) are (-2, 1) and (2, 4) respectively.

(b)
$$h(x) = -3x^3 + x - 4$$

=
$$(3x^3 - x + 4)$$

= $f(x)$

:. The graph of y = f(x) is reflected about the *x*-axis to give the graph of y = h(x).

Quick Practice 3.16 (p. 3.55)

(a) The graph of $y = \overline{f}(x)$ is enlarged along the *y*-axis to 2 times the original to give the graph of y = g(x).

$$g(x) = 2f(x)$$

(b) $= 2(2x^{2} + 2x - 1)$
 $= 4x^{2} + 4x - 2$

Quick Practice 3.17 (p. 3.58)

(a)
$$g(x) = \log \frac{x}{4}$$
$$= f \begin{bmatrix} x \\ 0 \end{bmatrix} \frac{x}{4}$$

:. The graph of y = f(x) is enlarged along the *x*-axis to 4 times the original to give the graph of y = g(x).

(b)
$$h(x) = \log 3x$$

 $= f(3x)$
 \therefore The graph of $y = f(x)$ is reduced along the *x*-axis to
 $\frac{1}{3}$ times the original to give the graph of $y = h(x)$.

Quick Practice 3.18 (p. 3.60)

(a) Let the graph of y = h(x) be the graph obtained by enlarging

NSS Mathematics in Action (2nd Edition) 6A Full Solutions

the graph of y = f(x) along the *x*-axis to 2 times the original.

$$h(x) = f \begin{bmatrix} x \\ 2 \end{bmatrix}$$

The graph of $y = g(x)$ is obtained by translating the graph of $y = h(x)$ downwards by 3 units.
 $g(x) = h(x) - 3$

$$= f \begin{bmatrix} x \\ 0 \\ 2 \end{bmatrix} - 3$$

$$\therefore = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} x \\ 2 \\ 0 \end{bmatrix} - 4 \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}^2 + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} - 3$$

$$= \frac{1}{4} (x - 8)^2 + 6 - 3$$

$$= \frac{1}{4} (x - 8)^2 + 3$$

(b) The coordinates of the vertex of the graph of y = g(x) are (8, 3).

Quick Practice 3.19 (p. 3.61)

(a) From the graph, *y*-intercept of the graph of y = f(x) is 1, *y*-intercept of the graph of y = g(x) is -1 \therefore k = 1 - (-1)

(b) The graph of y = g(x) is obtained by translating the graph of y = f(x) downwards by 2 units and then reflecting about the *y*-axis. g(x) = f(-x) - 2

$$(x) = f(-x) - 2 = 2^{-x} - 2$$

Further Practice

Further Practice (p. 3.11)

1. The required graph is:

The required graph is: $y = 9 - (x+4)^2$ (-4, 9) (-4, 9) (-4, 9) (-7, -7) (x = -4

2.

3.

1.

Further Practice (p. 3.23)

 $2\sin x = 0.5$

 $\sin x = 0.25$

Draw the horizontal line y = 0.25 on the graph of $y = \sin x$.

- : The two graphs intersect at $x = 12^{\circ}$ and $x = 168^{\circ}$.
- ... For $0^{\circ} \le x \le 360^{\circ}$, the solutions of $2\sin x = 0.5$ are $x = 12^{\circ}$ or 168° .
- 2. $\cos 2x + 0.6 = 0$

 $\cos 2x = -0.6$

Draw the horizontal line y = -0.6 on the graph of $y = \cos 2x$.

- The two graphs intersect at $x = 63^\circ$, $x = 117^\circ$, $x = 243^\circ$ and $x = 297^\circ$.
- ... For $0^{\circ} \le x \le 360^{\circ}$, the solutions of $\cos 2x + 0.6 = 0$ are $x = 63^{\circ}$, 117°, 243° or 297°.

$$3^{x+1} - 0.3 = 0$$

3. $3(3^x) = 0.3$

$$3^{x} = 0.1$$

Draw the horizontal line y = 0.1 on the graph of $y = 3^x$.

The solution of
$$3^{x+1} - 0.3 = 0$$
 is $x = -2.1$.

$$3\log_{\frac{1}{3}}x^{2} + 2 = 5$$
4.
$$6\log_{\frac{1}{3}}x = 3$$

$$\log_{1} x = 0.5$$

$$\log_{\frac{1}{3}} x = 0$$

Draw the horizontal line y = 0.5 on the graph of $y = \log_1 x$

The two graphs intersect at
$$x = 0.6$$
.

$$\therefore \text{ The solution of } 3\log_{\frac{1}{3}} x^2 + 2 = 5 \text{ is } x = 0.6.$$

Further Practice (p. 3.35)

1.

(a) Draw the horizontal line y = -0.7 on the graph of $y = \log x$.

The two graphs intersect at x = 0.2. For the range $x \ge 0.2$, the corresponding part of the graph of $y = \log x$ lies on or above the line y = -0.7.

 \therefore The solutions of log $x \ge -0.7$ are $x \ge 0.2$.

(b) - log x ≥- 0.4 log x ≤0.4 Draw the horizontal line y = 0.4 on the graph of y = log x. The two graphs intersect at x = 2.5. For the range 0 < x ≤ 2.5, the corresponding part of the graph of y = log x lies on or below the line y = 0.4. ∴ The solutions of -log x ≥ -0.4 are 0 < x ≤ 2.5. $\frac{1}{2}x^3 - 5 \ge 3$ $\frac{1}{2}x^3 \ge 8$

$$x \ge 10$$

Draw the horizontal line $y = 16$ on the graph of $y = x^3$.

The two graphs intersect at x = 2.5. For the range $x \ge 2.5$, the corresponding part of the graph of $y = x^3$ lies on or above the line y = 16.

∴ The solutions of
$$\frac{1}{2}x^3 - 5 \ge 3$$
 are $x \ge 2.5$

Further Practice (p. 3.62)

1. (a) (iii)

2.

The graph of $y = \cos x + 1$ is obtained by translating the graph of $y = \cos x$ upwards by 1 unit.

(b) (i)

The graph of $y = 2\cos x$ is obtained by enlarging the graph of $y = \cos x$ along the *y*-axis to 2 times the original.

(c) (ii)

The graph of $y = \cos \frac{x}{2}$ is obtained by enlarging the graph of $y = \cos x$ along the *x*-axis to 2 times the original.

2. (a)

$$g(x) = x^{2} - 2x + 3$$

$$= (x - 1)^{2} + 2$$

$$= f(x) + 2$$

∴ The graph of y = f(x) is translated upwards by 2 units to give the graph of y = g(x).

$$g(x) = x^{2} + 2x + 1$$

(b) $= (x + 1)^{2}$
 $= (x + 2 - 1)^{2}$
 $= f(x + 2)$

2

∴ The graph of y = f(x) is translated leftwards by 2 units to give the graph of y = g(x).

Alternative Solution

$$g(x) = x^{2} + 2x + 1$$

$$= (x + 1)^{2}$$

$$= (-x - 1)^{2}$$

$$= f(-x)$$
The graph of $y = f(x)$ is reflected

- ... The graph of y = f(x) is reflected about the *y*-axis to give the graph of y = g(x).
- (a) Let the graph of y = h(x) be the graph obtained by reflecting the graph of y = f(x) about the *x*-axis.

h(x) = -f(x)

The graph of y = g(x) is obtained by translating the graph of y = h(x) leftwards by 2 units. a(x) = h(x + 2)

$$g(x) = -f(x+2)$$

= - {[(x+2)+2]² - 5}
= 5 - (x+4)²

(b) The coordinates of the vertex of the graph of y = g(x) are (-4, 5).

Exercise

3.

Exercise 3A (p. 3.16)

Level 1

- 1. The domain of the function y = -2x + 1 is all real numbers. The graph of the function has no axis of symmetry. The function has neither maximum value nor minimum value.
- 2. The domain of the function $y = -x^2 4x + 5$ is all real numbers.

$$y = -x^{2} - 4x + 5$$

= - (x² + 4x) + 5
= - (x² + 4x + 4) + 4 + 5
= - (x + 2)^{2} + 9

- : The axis of symmetry is x = -2. The maximum value of the function is 9.
- **3.** The domain of the function $y = \begin{bmatrix} \frac{1}{2} \\ 0 \end{bmatrix}^{x}$ is all real numbers.

The graph of the function has no axis of symmetry. The function has neither maximum value nor minimum value.

- 4. The domain of the function y = 2 log x is all positive real numbers.The graph of the function has no axis of symmetry. The function has neither maximum value nor minimum value.
- **5.** The domain of the function $y = \cos x$ is all real numbers. The period of the function is 360°. The maximum value and the minimum value of the function are 1 and -1 respectively.
- **6.** The domain of the function $y = \sin 2x$ is all real numbers. The period of the function is 180°. The maximum value and the minimum value of the function are 1 and -1 respectively.
- 7. The domain of the function $y = -\tan x$ is all real numbers except $\pm 90^{\circ}$, $\pm 270^{\circ}$, etc.

The period of the function is 180°. The function has neither maximum value nor minimum value.

9. (a) The required graph is:

(b) The required graph is:

- **10.** (a) (i) Its axis of symmetry: *x* = 1
 - (ii) The coordinates of the vertex: (1, 2) (iii) \therefore Coefficient of $x^2 = -1 < 0$
 - ∴ The graph opens downwards.

(iv) When
$$x = 0$$
, $y = -(0 - 1)^2 + 2 = 1$
 \therefore Its *y*-intercept is 1.

(b) When y = 0,

$$0 = -(x - 1)^{2} + 2$$

(x - 1)² = 2
x - 1 = $\pm \sqrt{2}$
x = $-\sqrt{2} + 1$ or x = $\sqrt{2} + 1$

 \therefore Its *x*-intercepts are - $\sqrt{2}$ + 1 and $\sqrt{2}$ + 1. The required graph is:

13. (a) The required graph is: y

(b) The required graph is:

Level 2

15. (a) When
$$y = 0$$
, $x^{2} = 1$
 $x = \pm 1$

The *x*-intercepts are
$$-1$$
 and 1.

(b) The required graph is:

16. (a) The required graph is:

92

(b) The minimum value of the function is -12.

17. (a) The required graph is:

- **(b)** The maximum value of the function is –0.5.
- 18. (a), (b)

- **(b)** Yes, the two graphs in (a) show reflectional symmetry with each other about the *x*-axis.
- 21. (a) $y = 2^x$

Exercise 3B (p. 3.24) Level 1

1.

2.

- (a) Draw the horizontal line y = 0 on the graph of $y = x^2 + 4x + 4$.
 - ∵ The two graphs intersect at x = -2.0.
 - \therefore The solution of $x^2 + 4x + 4 = 0$ is x = -2.0.
- (b) Draw the horizontal line y = 1 on the graph of $y = x^2 + 4x + 4$.
 - \therefore The two graphs intersect at x = -3.0 and x = -1.0.
 - :. The solutions of $x^2 + 4x + 4 = 1$ are x = -3.0 or -1.0.

- (a) Draw the horizontal line y = 7 on the graph of $y = -2x^2 + 5x + 3$.
 - \because The two graphs do not intersect.
 - ∴ The equation $2x^2 + 5x + 3 = 7$ has no real solutions.
- (b) Draw the horizontal line y = -0.6 on the graph of $y = -2x^2 + 5x + 3$.
 - : The two graphs intersect at x = -0.6 and x = 3.1.
 - ... The solutions of $2x^2 + 5x + 3 = -0.6$ are x = -0.6 or 3.1.

(a) Draw the horizontal line y = 1 on the graph of $y = x^3 + x^2 + 1$.

- ∴ The two graphs intersect at x = -1.0 and x = 0.0.
- \therefore The solutions of $x^3 + x^2 + 1 = 1$ are x = -1.0 or 0.0.
- (b) Draw the horizontal line y = -1.2 on the graph of $y = x^3 + x^2 + 1$.
 - ∴ The two graphs intersect at x = -1.7.
 - : The solution of $x^3 + x^2 + 1 = -1.2$ is x = -1.7.

- ∵ The two graphs intersect at x = -2.4, x = 0.0 and x = 0.4.
- ... The solutions of x^3 $2x^2$ + x + 1 = 1 are x = -2.4, 0.0 or 0.4.

(b) Draw the horizontal line $y = -\frac{5}{2}$ on the graph of

- $y = -x^3 2x^2 + x + 1$.
- \therefore The two graphs intersect at *x* = 1.2.
- ... The solution of $-x^3 2x^2 + x + 1 = -\frac{5}{2}$ is x = 1.2.

(a) Draw the horizontal line y = 3 on the graph of

$$y = \begin{bmatrix} \frac{1}{2} \end{bmatrix}^{x}$$

∵ The two graphs intersect at x = -1.6.

$$\therefore$$
 The solution of $\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}^{n} = 3$ is $x = -1.6$.

(b) Draw the horizontal line y = 0 on the graph of

$$y = \begin{bmatrix} \frac{1}{2} \end{bmatrix}^{x}.$$

.....

- ∵ The two graphs do not intersect.
 - $\begin{vmatrix} 1 \\ 1 \\ 2 \end{vmatrix} = 0$ has no real solutions.

6.

7.

5.

- (a) Draw the horizontal line y = 0.6 on the graph of $y = \log_3 x$.
 - \therefore The two graphs intersect at *x* = 1.9.
 - \therefore The solution of $\log_3 x = 0.6$ is x = 1.9.
- **(b)** Draw the horizontal line y = -0.5 on the graph of $y = \log_3 x$.
 - \therefore The two graphs intersect at *x* = 0.6.
 - \therefore The solution of $\log_3 x = -0.5$ is x = 0.6.

- (a) Draw the horizontal line y = 0.5 on the graph of $y = \cos x$.
 - : The two graphs intersect at $x = 60^{\circ}$ and $x = 300^{\circ}$.
 - \therefore The solutions of $\cos x = 0.5$ are $x = 60^{\circ}$ or 300° .
- **(b)** Draw the horizontal line y = -1 on the graph of $y = \cos x$.
 - The two graphs intersect at $x = 180^{\circ}$.
 - \therefore The solution of $\cos x = -1$ is $x = 180^{\circ}$.

(b) v = 1.50.5 120° 180 240° 300° 60 $\sin x + 0.5 = 0$ (a) $\sin x = -0.5$ Draw the horizontal line y = -0.5 on the graph of $y = \sin x$. \cdot The two graphs intersect at $x = 210^{\circ}$ and $x = 330^{\circ}$. .:. For $0^{\circ} \le x \le 360^{\circ}$, the solutions of $\sin x + 0.5 = 0$ are $x = 210^{\circ}$ or 330° . $\sin x - 1.5 = 0$ (b) $\sin x = 1.5$ Draw the horizontal line y = 1.5 on the graph of $y = \sin x$ The two graphs do not intersect. For $0^{\circ} \le x \le 360^{\circ}$, sin x - 1.5 = 0 has no real solutions. $4 \tan 3x + 1 = 0$ (a) $4 \tan 3x = -1$ $\tan 3x = -0.25$

(b) Draw the horizontal line y = -0.25 on the graph of $y = \tan 3x$.

- The two graphs intersect at $x = 55^\circ$, $x = 115^\circ$ and $x = 175^\circ$.
- ... For $0^{\circ} \le x \le 180^{\circ}$, the solutions of 4 tan 3x + 1 = 0 are $x = 55^{\circ}$, 115° or 175°.

8.

9.

Draw the horizontal line y = 2 on the graph of y = f(x). \therefore The two graphs intersect at x = 0.75. \therefore The solution of 3f(x) = 6 is x = 0.75.

2f(x) + 1 = 0

(b)

2f(x) = -1

$$f(x) = -0.5$$

Draw the horizontal line y = -0.5 on the graph of y = f(x).

- The two graphs intersect at x = -0.80.
- \therefore The solution of 2f(x) + 1 = 0 is x = -0.80.

 $4x^3 - 8x^2 + 2x + 4 = 3$

 $2(2x^3 - 4x^2 + x + 2) = 3$

2x - 4x + x + 2) = 3

 $2x^{3} - 4x^{2} + x + 2 = 1.5$ Draw the horizontal line *y* = 1.5 on the graph of $y = 2x^{3} - 4x^{2} + x + 2$.

- The two graphs intersect at x = -0.2, x = 0.7 and x = 1.6.
- :. The solutions of $4x^3 8x^2 + 2x + 4 = 3$ are x = -0.2, 0.7 or 1.6.

 $10 \sin x - 15 \cos x = 13$

^{12.}
$$5(2\sin x - 3\cos x) = 13$$

 $2\sin x - 3\cos x = 2.6$

Draw the horizontal line y = 2.6 on the graph of $y = 2 \sin x - 3 \cos x$.

- ∴ The two graphs intersect at $x = -260^\circ$, $x = -170^\circ$, $x = 100^\circ$ and $x = 190^\circ$.
- ... For $-360^{\circ} \le x \le 360^{\circ}$, the solutions of $10 \sin x 15 \cos x = 13$ are $x = -260^{\circ}$, -170° , 100° or 190° .

 $4x^2 + 4x - 6 = 0$

13. $4x^2 + 4x - 8 + 2 = 0$

 $4x^2 + 4x - 8 = -2$ Draw the horizontal line y = -2 on the graph of $y = 4x^2 + 4x - 8$.

Draw the horizontal line y = 3 on the graph of $y = 8^x$.

;	у
1	(b) $y = 0.5$
-2 -1 0	1 2 x
-1-	(a) $y = -1$
-2-	$y=1-2x^3$
-3-	
-4-	

- (a) Draw the horizontal line y = -1 on the graph of $y = 1 2x^2$. The two graphs intersect at x = -1 and x = 1. For the ranges $x \le -1$ or $x \ge 1$, the corresponding parts of the graph of $y = 1 - 2x^2$ lie on or below the line y = -1.
 - \therefore The solutions of $1 2x^2 \le -1$ are $x \le -1$ or $x \ge 1$.
- **(b)** Draw the horizontal line y = 0.5 on the graph of $y = 1 2x^2$.

The two graphs intersect at x = -0.5 and x = 0.5. For the range $-0.5 \le x \le 0.5$, the corresponding part of the graph of $y = 1 - 2x^2$ lies on or above the line y = 0.5. \therefore The solutions of $1 - 2x^2 \ge 0.5$ are $-0.5 \le x \le 0.5$.

3.

4.

2.

- (a) Draw the horizontal line y = 4 on the graph of y = f(x). The two graphs intersect at x = 0, x = 1 and x = 3. For the ranges $x \le 0$ and $1 \le x \le 3$, the corresponding parts of the graph of y = f(x) lie on or below the line y = 4.
 - $\therefore \quad \text{The solutions of } f(x) \le 4 \text{ are } x \le 0 \text{ or } 1 \le x \le 3.$
- (b) Draw the horizontal line y = -4 on the graph of y = f(x). The two graphs intersect at x = -1. For the range x ≥ -1, the corresponding part of the graph of y = f(x) lies on or above the line y = -4.
 ∴ The solutions of f(x) ≥ -4 are x ≥ -1.

- (a) Draw the horizontal line y = −1 on the graph of y = f(x). The two graphs intersect at x = 3.6. For the range x > 3.6, the corresponding part of the graph of y = f(x) lies below the line y = −1.
 ∴ The solutions of f(x) < −1 are x > 3.6.
- (b) Draw the horizontal line y = 2 on the graph of y = f(x). The two graphs intersect at x = -0.7, x = 2 and x = 2.7. For the ranges x < -0.7 and 2 < x < 2.7, the corresponding parts of the graph of y = f(x) lie above the line y = 2.
 - $\therefore \quad \text{The solutions of } f(x) > 2 \text{ are } x < -0.7 \text{ or } 2 < x < 2.7.$

5.

(a) Draw the horizontal line y = 3 on the graph of $y = 2^x - 1$. The two graphs intersect at x = 2.

For the range x < 2, the corresponding part of the graph of $y = 2^x - 1$ lies below the line y = 3. \therefore The solutions of $2^x - 1 < 3$ are x < 2.

(b) Draw the horizontal line y = -1 on the graph of $y = 2^x - 1$.

The two graphs do not intersect, and the whole graph of $y = 2^x - 1$ lies above the line y = -1.

The inequality $2^x - 1 < -1$ has no real solutions.

(a) Draw the horizontal line y = 21 on the graph of

$$y = \begin{bmatrix} \frac{1}{2} \end{bmatrix}^{x} + 5.$$

The two graphs intersect at x = -4.

For the range $x \le -4$, the corresponding part of the graph

of
$$y = \begin{bmatrix} \frac{1}{2} \\ 0 \end{bmatrix}$$
 + 5 lies on or above the line $y = 21$.
 \therefore The solutions of $\begin{bmatrix} \frac{1}{2} \\ 0 \end{bmatrix}^{x} + 5 \ge 21$ are $x \le -4$.

(b) Draw the horizontal line y = 4 on the graph of

6.

$$y = \begin{bmatrix} \frac{1}{2} \end{bmatrix}_{x}^{x} + 5$$

The two graphs do not intersect, and the whole graph of

$$y = \begin{bmatrix} 1 \\ 2 \end{bmatrix}^{x} + 5 \text{ lies above the line } y = 4.$$

$$\therefore \quad \text{The solutions of } \begin{bmatrix} 1 \\ 2 \end{bmatrix}^{x} + 5 \ge 4 \text{ are all real values} \text{ of } x.$$

7. Draw the horizontal line y = 0.5 on the graph of $y = \sin 2x$.

The two graphs intersect at $x = 15^\circ$, $x = 75^\circ$, $x = 195^\circ$ and $x = 255^\circ$.

For the ranges $15^{\circ} < x < 75^{\circ}$ and $195^{\circ} < x < 255^{\circ}$, the corresponding parts of the graph of $y = \sin 2x$ lie above the line y = 0.5.

... For $0^{\circ} \le x \le 360^{\circ}$, the solutions of sin 2x > 0.5 are $15^{\circ} < x < 75^{\circ}$ or $195^{\circ} < x < 255^{\circ}$.

8. $\tan x - 1 < 0$

tan *x* <1

The two graphs intersect at $x = 45^{\circ}$ and $x = 225^{\circ}$. For the ranges $0^{\circ} \le x < 45^{\circ}$, $90^{\circ} < x < 225^{\circ}$ and $270^{\circ} < x \le 360^{\circ}$, the corresponding parts of the graph of $y = \tan x$ lie below the line y = 1.

... For $0^{\circ} \le x \le 360^{\circ}$, the solutions of $\tan x - 1 \le 0$ are $0^{\circ} \le x \le 45^{\circ}$, $90^{\circ} \le x \le 225^{\circ}$ or $270^{\circ} \le x \le 360^{\circ}$.

$$4\cos\frac{x}{2} + 3 \le 0$$
(a)
$$4\cos\frac{x}{2} \le -3$$

$$\cos\frac{x}{2} \le -0.75$$

9.

(b) Draw the horizontal line y = -0.75 on the graph of

$$y = \cos \frac{x}{2}$$
.

The two graphs intersect at $x = 210^{\circ}$ and $x = 330^{\circ}$. For the range $210^{\circ} \le x \le 330^{\circ}$, the corresponding part of the graph of $y = \sin x + 2$ lies on or below the line y = 1.5.

∴ For $0^\circ \le x \le 360^\circ$, the solutions of sin $x \le -0.5$ are $210^\circ \le x \le 330^\circ$.

10 log x - 3
$$\leq 0$$

12. 10 log x < 2

$$10 \log x$$

 $\log x \leq 0.3$

≤3

Draw the horizontal line y = 0.3 on the graph of $y = \log x$.

The two graphs intersect at x = 2. For the range $0 < x \le 2$, the corresponding part of the graph of $y = \log x$ lies on or below the line y = 0.3. \therefore The solutions of 10 log $x - 3 \le 0$ are $0 \le x \le 2$. 2 $y = \sin x - \cos x$ (b) y = 0.40 120° 180° 360° (a) y = -0.513. $2\sin x - 2\cos x + 3 > 2$ (a) $2(\sin x - \cos x) > -1$ $\sin x - \cos x > -0.5$ Draw the horizontal line y = -0.5 on the graph of $y = \sin x - \cos x$. The two graphs intersect at $x = 24^{\circ}$ and $x = 246^{\circ}$. For the range $24^{\circ} < x < 246^{\circ}$, the corresponding part of the graph of $y = \sin x - \cos x$ lies above the line y = -0.5. *.*.. For $0^{\circ} \le x \le 360^{\circ}$, the solutions of $2\sin x - 2\cos x + 3 > 2$ are $24^{\circ} < x < 246^{\circ}$. $5\cos x \ge 5\sin x - 2$ (b) $5(\sin x - \cos x) \le 2$ $\sin x - \cos x \le 0.4$ Draw the horizontal line y = 0.4 on the graph of $y = \sin x - \cos x$. The two graphs intersect at $x = 60^{\circ}$ and $x = 210^{\circ}$. For the ranges $0^{\circ} \le x \le 60^{\circ}$ and $210^{\circ} \le x \le 360^{\circ}$, the corresponding parts of the graph of $y = \sin x - \cos x$ lie on or below the line y = 0.4. For $0^\circ \le x \le 360^\circ$, the solutions of ÷. $5\cos x \ge 5\sin x - 2$ are $0^\circ \le x \le 60^\circ$ or $210^{\circ} \le x \le 360^{\circ}$. (a) y = 3

- (a) Draw the horizontal line y = 3 on the graph of $y = x^3 + 3x^2 - 1$. The two graphs intersect at x = -2 and x = 1. For the range x > 1, the corresponding part of the graph of $y = x^3 + 3x^2 - 1$ lies above the line y = 3. \therefore The solutions of $x^3 + 3x^2 - 1 > 3$ are x > 1.
- **(b)** Draw the horizontal line y = -1 on the graph of $y = x^3 + 3x^2 - 1$.

The two graphs intersect at x = -3 and x = 0. When $x \le -3$ and x = 0, the corresponding parts of the

graph of $y = x^3 + 3x^2 - 1$ lie on or below the line y = -1.

·. The solutions of $x^3 + 3x^2 - 1 \le -1$ are $x \le -3$ or *x* = 0.

(a)
$$x^2 - 2x - 1$$

 $x^2 - 2x + 3 < 4$ Draw the horizontal line y = 4 on the graph of $y = x^2 - 2x + 3.$ The two graphs intersect at x = -0.4 and x = 2.4. For the range -0.4 < x < 2.4, the corresponding part of the graph of $y = x^2 - 2x + 3$ lies below the line y = 4. : The solutions of $x^2 - 2x - 1 < 0$ are -0.4 < x < 2.4.

$x^2 - 2x + 1 > 0$ (b)

 $x^2 - 2x + 3 > 2$ Draw the horizontal line y = 2 on the graph of $y = x^2 - 2x + 3$. The two graphs intersect at x = 1. For the ranges x < 1 and x > 1, the corresponding parts of the graph of $y = x^2 - 2x + 3$ lie above the line y = 2. The solutions of $x^2 - 2x + 1 > 0$ are all real values ÷. of *x* except x = 1.

16. (a) Draw the horizontal line y = 6 on the graph of

The two graphs intersect at x = 2.3.

For the range $x \ge 2.3$, the corresponding part of the graph of $y = x^3 - 2x - 2$ lies on or above the line y = 6. The solutions of $x^3 - 2x - 2 \ge 6$ are $x \ge 2.3$. ÷.

(b)
$$x^3 \ge 2(x+4)$$

 $x^3 > 2x+8$

 $x^3 - 2x - 2 \ge 6$

From (a), the solutions of $x^3 - 2x - 2 \ge 6$ are $x \ge 2.3$.

The smallest integer *x* that satisfies $x^3 \ge 2(x + 4)$ is 3. *.*...

17. (a)
$$2^{x} - x^{2} - 4 \leq 0$$

$$2^{x} - x^{2} \leq 4$$

Draw the horizontal line $y = 4$ on the graph of $y = 2^{x} - x^{2}$.

The two graphs intersect at x = 4.7. For the range $x \le 4.7$, the corresponding part of the graph of $y = 2^x - x^2$ lies on or below the line y = 4. \therefore The solutions of $2^x - x^2 - 4 \ge 0$ are $x \le 4.7$.

$$2^{x} + 4x \leq (x+2)^{2}$$

(b)
$$2^x + 4x \le x^2 + 4x + 4$$

 $2^{x} - x^{2} - 4 \leq 0$

From (a), the solutions of $2^x - x^2 - 4 \le 0$ are $x \le 4.7$. \therefore The largest integer *x* that satisfies $2^x + 4x \le (x + 2)^2$ is 4.

18. (a) \therefore The *y*-intercept of the graph of $y = x^2 - 6x + c$ is 3. \therefore By substituting (0, 3) into $y = x^2 - 6x + c$, we have $3 = 0^2 - 6(0) + c$

$$3 = 0^2 - 6(0)$$

 $c = 3$

$$x^2 - 6x + 3 \le 3$$

Draw the horizontal line y = 3 on the graph of $y = x^2 - 6x + 3$.

The two graphs intersect at x = 0 and x = 6. For the range $0 \le x \le 6$, the corresponding part of the graph of $y = x^2 - 6x + 3$ lies on or below the line y = 3.

 $\therefore \quad \text{The solutions of } x^2 - 6x \le 0 \text{ are } 0 \le x \le 6.$ $- x^2 + 6x \le 5$

$$x^2 - 6x \ge -5$$

(ii)

$$x^2 - 6x + 3 \ge -$$

Draw the horizontal line y = -2 on the graph of $y = x^2 - 6x + 3$.

2

The two graphs intersect at x = 1 and x = 5. For the ranges $x \le 1$ and $x \ge 5$, the corresponding parts of the graph of $y = x^2 - 6x + 3$ lie on or above the line y = -2.

 $\therefore \quad \text{The solutions of } -x^2 + 6x \le 5 \text{ are } x \le 1 \text{ or } x \ge 5.$

19. (a)
$$\log (1000x^2) = \log x^2 + \log 1000$$

= $2 \log x + 3$

 $\log(1000x^2) > 2$

(b)
$$2 \log x + 3 > 2$$

$$2 \log x > -1$$

$$\log x > -0.5$$

Draw the horizontal line y = -0.5 on the graph of $y = \log x$.

The two graphs intersect at x = 0.3. For the range x > 0.3, the corresponding part of the graph of $y = \log x$ lies above the line y = -0.5. \therefore The solutions of log $(1000x^2) > 2$ are x > 0.3.

20. -3 < f(x) < -1

Draw the horizontal line y = 0 on the graph of y = f(x) + 1. The two graphs intersect at x = 0, x = 0.5 and x = 2.3. For the ranges x < 0 and 0.5 < x < 2.3, the corresponding parts of the graph of y = f(x) + 1 lie below the line y = 0. \therefore The solutions of f(x) < -1 are x < 0 or 0.5 < x < 2.3. Draw the horizontal line y = -2 on the graph of y = f(x) + 1. The two graphs intersect at x = -0.3, x = 1.5 and x = 2. For the ranges -0.3 < x < 1.5 or x > 2, the corresponding parts of the graph of y = f(x) + 1 lie above the line y = -2. \therefore The solutions of f(x) > -3 are -0.3 < x < 1.5 or x > 2.

∴ The solutions of -3 < f(x) < -1 are -0.3 < x < 0, 0.5 < x < 1.5 or 2 < x < 2.3.

Exercise 3D (p. 3.63) Level 1

- (a) The graph of y = f(x) is translated downwards by 1 unit.
 (b) The graph of y = f(x) is translated rightwards by 3 units.
 - (c) The graph of y = f(x) is reflected about the *y*-axis.

- (d) The graph of y = f(x) is enlarged along the *y*-axis to 3 times the original.
- (e) The graph of y = f(x) is reduced along the *y*-axis to $\frac{1}{3}$ times the original.
- (f) The graph of y = f(x) is reduced along the *x*-axis to $\frac{1}{3}$ times the original.
- 2. The graph of y = f(x) is translated rightwards by 5 units.
- **3.** The graph of y = f(x) is reflected about the *x*-axis.
- **4.** The graph of y = f(x) is reflected about the *y*-axis.
- 5. The graph of y = f(x) is translated upwards by 1 unit.
- **6.** \therefore The graph of y = g(x) is obtained by translating the graph of $y = x^2 1$ upwards by 4 units.

$$\therefore \quad g(x) = x^2 - 1 + 4$$
$$= \underline{x^2 + 3}$$

7. The graph of y = g(x) is obtained by translating the graph of $y = x^2 - 1$ leftwards by 4 units. $a(x) = (x + 4)^2 - 1$

$$\therefore = x^{2} + 8x + 16 - 1$$
$$= x^{2} + 8x + 15$$

8. \therefore The graph of y = g(x) is obtained by reflecting the graph of $y = x^2 - 1$ about the *x*-axis.

∴
$$g(x) = -(x^2 - 1)$$

= $-x^2 + 1$

9. \therefore The graph of y = g(x) is obtained by enlarging the graph of $y = x^2 - 1$ along the *y*-axis to 4 times the original.

$$g(x) = 4(x^2 - 1)$$

= $4x^2 - 4$

10. (a)	x	0	1	2	3	4
	<i>f</i> (<i>x</i>)	-4	-3	0	2	3
	<i>g</i> (<i>x</i>)	<u>-1</u>	<u>0</u>	<u>3</u>	<u>5</u>	<u>6</u>
(b)	x	0	1	2	3	4
	<i>f</i> (<i>x</i>)	-4	-3	0	2	3
	h(x)	<u>-16</u>	<u>-12</u>	<u>0</u>	<u>8</u>	<u>12</u>
11. (a)	x	-2	-1	0	1	2
	<i>f</i> (<i>x</i>)	10	6	2	-1	-5
	<i>g</i> (<i>x</i>)	<u>-10</u>	<u>6</u>	<u>-2</u>	<u>1</u>	<u>5</u>
(b)	x	-2	-1	0	1	2
Í	<i>f</i> (<i>x</i>)	10	6	2	-1	-5
	h(x)	<u>-5</u>	<u>-1</u>	<u>2</u>	<u>6</u>	<u>10</u>
-						

12. (a) \therefore The graph of y = g(x) is obtained by translating the graph of y = f(x) downwards by 2 units. \therefore g(x) = f(x) - 2

NSS Mathematics in Action (2nd Edition) 6A Full Solutions

13. (a) \therefore The graph of y = g(x) is obtained by reflecting the graph of $y = \tan x$ about the *y*-axis. $g(x) = \underline{\tan(-x)}$

- **14.** (a) The graph of $y = 3x^2 4x + 2$ is translated downwards by 3 units to give the graph of y = g(x).
 - (b) $g(x) = (3x^2 4x + 2) 3$ = $3x^2 - 4x - 1$
- **15.** (a) The graph of $y = 2^x$ is enlarged along the *y*-axis to 5 times the original to give the graph of y = g(x).

(b)
$$g(x) = \underline{5(2^x)}$$

 $g(x) = (3^{x})^{4}$ 16. (a) $= 3^{4x}$ = f(4x)

(b) The graph of y = f(x) is reduced along the *x*-axis to $\frac{1}{4}$ times the original to give the graph of y = g(x).

Level 2

17. $g(x) = x^{2} + 4x + 2$ $= (x^{2} + 4x - 2) + 4$ = f(x) + 4

∴ The graph of y = f(x) is translated upwards by 4 units to give the graph of y = g(x).

$$g(x) = x^{2} + 10x + 25$$
18.
$$= (x+5)^{2}$$

$$= f(x+5)$$

... The graph of y = f(x) is translated leftwards by 5 units to give the graph of y = g(x).

19.
$$g(x) = 5^{-x}$$

= $f(-x)$

: The graph of y = f(x) is reflected about the *y*-axis to give the graph of y = g(x).

$$\begin{array}{l} 20. \quad g(x) = \log 3x \\ = f(3x) \end{array}$$

 $\therefore \quad \text{The graph of } y = f(x) \text{ is reduced along the } x \text{-axis to}$ $\frac{1}{3} \text{ times the original to give the graph of } y = g(x).$

$$g(x) = \sin x$$

21.
$$= \sin \begin{bmatrix} 0 \\ 2 \end{bmatrix} \begin{bmatrix} x \\ 2 \end{bmatrix} \begin{bmatrix} x \\ 0 \end{bmatrix}$$
$$= f \begin{bmatrix} x \\ 0 \end{bmatrix} \begin{bmatrix} x \\ 2 \end{bmatrix}$$

∴ The graph of y = f(x) is enlarged along the *x*-axis to 2 times the original to give the graph of y = g(x).

22. Let
$$f(x) = x^2 - 1$$
, $g(x) = \frac{1}{2}x^2 - \frac{1}{2}$ and
 $h(x) = (x - 1)^2 - 1$.
 $g(x) = \frac{1}{2}x^2 - \frac{1}{2}$
(a) $= \frac{1}{2}(x^2 - 1)$
 $= \frac{1}{2}f(x)$
 \therefore The graph of $y = g(y)$ is obtained by reducing t

... The graph of y = g(x) is obtained by reducing the graph of y = f(x) along the *y*-axis to $\frac{1}{2}$ times the original.

(b)
$$h(x) = (x - 1)^2 - 1$$

= $f(x - 1)$

... The graph of y = h(x) is obtained by translating the graph of y = f(x) rightwards by 1 unit.

23. (a)
$$f(x) = x^2 - 2x$$

= $x(x-2)$

103

 $g(x) = x^{2} - 8x + 15$ = (x - 3)(x - 5)

$$g(x) = (x - 3)(x - 5)$$

$$= (x - 3)[(x - 3) - 2]$$

$$= f(x - 3)$$

$$\therefore The graph of $y = f(x)$ is translated rightwards by
3 units to give the graph of $y = g(x)$.

$$g(x) = -3^{x+1} + 6$$
24.

$$= 3(-3^x) + 3(2)$$

$$= 3(-3^x + 2)$$

$$= 3f(x)$$

$$\therefore The graph of $y = f(x)$ is enlarged along the y-axis to 3
times the original to give the graph of $y = g(x)$.
Alternative Solution

$$g(x) = -3^{x+1} + 6$$

$$= (-3^{x+1} + 2) + 4$$

$$= f(x + 1) + 4$$

$$\therefore The graph of $y = f(x)$ is translated leftwards by 1 unit
and then upwards by 4 units to give the graph of
 $y = g(x)$.
25. (a)
$$\therefore The vertices of the graphs of $y = x^2 - 2x + 5$
and $y = g(x)$ are $(1, 4)$ and $(5, 0)$ respectively.

$$\therefore The graph of $y = h(x)$ be the graph obtained by
translating the graph of $y = x^2 - 2x + 5$ is translated
rightwards by 4 units and then downwards by
4 units to give the graph of $y = g(x)$.
(b) Let the graph of $y = h(x)$ be the graph obtained by
translating the graph of $y = x^2 - 2x + 5$ rightwards
4 units.

$$h(x) = (x - 4)^2 - 2(x - 4) + 5$$

$$\therefore = x^2 - 8x + 16 - 2x + 8 + 5$$

$$= x^2 - 10x + 29$$

$$\therefore The graph of $y = f(x)$ is translated leftwards by 3 units,
 $g(x) = h(x) - 4$

$$\therefore = x^2 - 10x + 29$$

$$\therefore The graph of $y = f(x)$ is translated leftwards by 3 units,
and then enlarged along the y-axis to 2 times the
original to give the graph of $y = g(x)$.
(b) The graph of $y = f(x)$ is translated leftwards by 3 units,
and then enlarged along the y-axis to 2 times the original
to give the graph of $y = g(x)$.
 $h(x) = 4x^2 + 4x + 2$
27.
 $= 2(2x^2 + 2x + 1)$
 $= 2[2(-x)^2 - 2(-x) + 1]$
 $= 2[2(-x)^2 -$$$$$$$$$$$$$$$

28. (a) Let *C* be the image of *A* when the graph of y = f(x) is reduced along the *y*-axis to $\frac{1}{2}$ times the original. $C = \begin{bmatrix} 4 & -\frac{4}{2} \\ 0 & -\frac{4}{2} \end{bmatrix}$ ÷ =(4, -2)÷ *B* is obtained by translating *C* leftwards by 1 unit. B = (4 - 1, -2)*.*.. =(3, -2) **(b)** \therefore A(4, -4) is a point on the graph of y = f(x). \therefore By substituting (4, -4) into $y = a(x - 3)^2 - 5$, we have

$$-4 = a(4 - 3)^{2} - 5$$

- 4 = a - 5
 $a = 1$

Let the graph of y = h(x) be the graph obtained by reducing the graph of y = f(x) along the *y*-

axis to

$$\therefore \quad h(x) = \frac{1}{2} f(x)$$

• •

The graph of y = q(x) is obtained by \cdot translating the graph of y = h(x) leftwards by 1

 $\frac{1}{2}$ times the original.

unit.

$$g(x) = h(x+1)$$

= $\frac{1}{2} f(x+1)$
∴ = $\frac{1}{2} \{ [(x+1) - 3]^2 - 5 \}$
= $\frac{1}{2} [(x - 2)^2 - 5]$
= $\frac{1}{2} (x - 2)^2 - \frac{5}{2}$

29. (a) Let the graph of y = h(x) be the graph obtained by enlarging the graph of $y = (x - 3)^2 - 5$ along the *y*-axis to 2 times the original.

$$h(x) = 2[(x - 3)^2 - 5]$$
$$= 2(x - 3)^2 - 10$$

÷ The graph of y = g(x) is obtained by translating the graph of y = h(x) leftwards by 1 unit. g(x) = h(x+1)

- **(b)** The coordinates of the vertex of the graph of y = g(x)are (2, -10).
- **30.** (a) Let the graph of y = h(x) be the graph obtained by reducing the graph of $y = \cos x$ along the *x*-axis to

$$\frac{1}{3}$$
 times the original.
∴ $h(x) = \cos 3x$
∵ The graph of $y = g(x)$ is obtained by translating the graph of $y = h(x)$ upwards by 3 units.
∴ $g(x) = h(x) + 3$
 $= \cos 3x + 3$
From (a), $g(x) = \cos 3x + 3$
∵ $-1 \le \cos 3x \le 1$
∴ The maximum value of $g(x) = 1 + 3$
 $= 4$

The minimum value of
$$g(x) = -1 + 3$$

= $\underline{\underline{2}}$

$$\therefore$$
 The period of cos *x* is 360°.

∴ The period of the function
$$g(x)$$

_ 360°

(b)

- **31.** (a) The graph of $y = \cos x + \sin x$ is reflected about the *x*axis, and then reduced along the y-axis to $\frac{1}{2}$ times the original to give the graph of y = g(x).
 - **(b)** Let the graph of y = h(x) be the graph obtained by reflecting the graph of $y = \cos x + \sin x$ about the *x*-axis. $h(x) = -(\cos x + \sin x)$ ÷

$$=-\cos x - \sin x$$

÷ The graph of y = g(x) is obtained by reducing the graph of y = h(x) along the *y*-axis to $\frac{1}{2}$ times the original.

$$g(x) = \frac{1}{2}h(x)$$

∴ $=\frac{1}{2}(-\cos x - \sin x)$
 $= -0.5\cos x - 0.5\sin x$

32. (a)
$$g(x) = -(x-1)^2 + 4$$

= $f(x-1)$

- *.*... The graph of y = f(x) is translated rightwards by 1 unit to give the graph of y = g(x).
- **(b)** From (a), the graph of y = g(x) is obtained by translating the graph of y = f(x) rightwards by 1 unit. The graph of $y = \frac{3}{2}g(x)$ is obtained by enlarging the graph of y = g(x) along the *y*-axis to $\frac{3}{2}$ times the original.

3 More about Graphs of Functions

33. (a)

$$g(x) = x^{2} + 2x$$

$$= (-x)^{2} - 2(-x)$$

$$= f(-x)$$

$$\therefore \text{ The graph of } y = f(x) \text{ is reflected about the } y\text{-axis to give the graph of } y = g(x).$$
Alternative Solution

$$g(x) = x^{2} + 2x$$

$$= x(x + 2)$$

= (x + 2)[(x + 2) - 2]
= (x + 2)² - 2(x + 2)
= f(x + 2)

- : The graph of y = f(x) is translated leftwards by 2 units to give the graph of y = g(x).
- (b) From (a), the graph of y = g(x) is obtained by reflecting the graph of y = f(x) about the *y*-axis.

The graph of $y = g \begin{bmatrix} x \\ 0 \\ 2 \end{bmatrix}$ is obtained by enlarging the

graph of y = g(x) along the *x*-axis to 2 times the original.

Check Yourself (p. 3.72)

1. (a) ✓ (b) × (c) × (d) ✓

- **2.** The quadratic graph $y = x^2 2x 8$ has reflectional symmetry about the line <u>x = 1</u>. It opens <u>upwards</u> and the coordinates of its vertex are (<u>1, -9</u>).
- **3.** In the figure, graph I may represent the graph of $y = 2^x$ and graph IV may represent the graph of $y = \log_{\frac{1}{2}} x$.

(b) $x^2 - 3x < -1$ $x^2 - 3x - 4 < -5$ Draw the horizontal line y = -5 on the graph of $y = x^2 - 3x - 4$. The two graphs intersect at x = 0.4 and x = 2.6. For the range 0.4 < x < 2.6, the corresponding part of the graph of $y = x^2 - 3x - 4$ lies below the line y = -5. \therefore The solutions of $x^2 - 3x < -1$ are 0.4 < x < 2.6. 5. (a) \therefore The graph of y = g(x) is obtained by translating the graph of $y = x^3 + 2x^2 - 2$ downwards by 2 units.

$$g(x) = (x^3 + 2x^2 - 2) - 2$$
$$= x^3 + 2x^2 - 4$$

(b) \therefore The graph of y = g(x) is obtained by reflecting the graph of $y = x^3 + 2x^2 - 2$ about the *x*-axis.

$$g(x) = -(x^3 + 2x^2 - 2)$$

$$\therefore \qquad = -x^3 - 2x^2 + 2$$

(c) \therefore The graph of y = g(x) is obtained by reducing the graph of $y = x^3 + 2x^2 - 2$ along the *x*-axis to half of the original.

$$g(x) = (2x)^3 + 2(2x)^2 - 2$$

$$\therefore = 8x^3 + 8x^2 - 2$$

$$g(x) = 2(\sin x + 1)$$

6. (a)
$$= 2\sin x + 2$$
$$= f(x) + 2$$

:. The graph of y = f(x) is translated upwards by 2 units to give the graph of y = g(x).

$$h(x) = \sin \frac{x}{2}$$

(b) $= \frac{1}{2} \begin{bmatrix} 2\sin\frac{x}{2} \end{bmatrix}$ $= \frac{1}{2} f \begin{bmatrix} \frac{x}{2} \end{bmatrix}$

... The graph of y = f(x) is reduced along the *y*-axis to to half of the original, and then enlarged along the *x*-axis to 2 times the original to give the graph of y = h(x).

Revision Exercise 3 (p. 3.73) Level 1

1. (a) When
$$x = 0$$

y = -2(0) + 3 = 3∴ The *y*-intercept is 3. When y = 0, 0 = -2x + 3 -3 = -2x $x = \frac{3}{2}$ ∴ The *x*-intercept is $\frac{3}{2}$.

(b) When x = 0, $y = (0)^2 - 6(0) + 5 = 5$ \therefore The *y*-intercept is 5. When y = 0, $0 = x^2 - 6x + 5$ 0 = (x - 1)(x - 5)x = 1 or x = 5 \therefore The *x*-intercepts are 1 and 5. (c) When x = 0, $y = 2^0 = 1$ The *y*-intercept is 1. *.*... \therefore The graph of $y = 2^x$ lies above the *x*-axis. \therefore The graph does not have *x*-intercepts. (d) ∵ The graph of $y = \log_3 x$ lies on the right-hand side of the *y*-axis. *.*... The graph does not have *y*-intercepts. When y = 0, $0 = \log_3 x$ $x = 3^{0}$ =1*.*.. The *x*-intercept is 1. 2. For the graph of $y = (x - 3)^2 - 2$, the axis of symmetry: x = 3the coordinates of the vertex: (3, -2)When x = 0. $y = (0 - 3)^2 - 2 = 7$ The *y*-intercept is 7. When y = 0, $0 = (x - 3)^2 - 2$ $x - 3 = \pm \sqrt{2}$ $x = 3 - \sqrt{2}$ or $x = 3 + \sqrt{2}$ The *x*-intercepts are $3 - \sqrt{2}$ and $3 + \sqrt{2}$. The required graph is: x = 30 $3^{+}\sqrt{2}$ $3 - \sqrt{2}$ $y = (x - 3)^2 - 2$ (3, -2) For the graph of $y = \frac{25}{4} - \begin{bmatrix} x - \frac{1}{2} \end{bmatrix}^2$, 3. the axis of symmetry: $x = \frac{1}{2}$ the coordinates of the vertex: $\begin{bmatrix} \frac{1}{2}, \frac{25}{4} \end{bmatrix}$

108

 $y = \frac{25}{4} - \begin{bmatrix} 0 \\ 0 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 0 \\ 0 \end{bmatrix}^2 = \frac{25}{4} - \frac{1}{4} = 6$ \therefore The *y*-intercept is 6. When y = 0, $0 = \frac{25}{4} - \begin{bmatrix} x - \frac{1}{2} \end{bmatrix}^2$ $x - \frac{1}{2} = \pm \sqrt{\frac{25}{4}}$ *x* =- 2 or x = 3 \therefore The *x*-intercepts are -2 and 3. The required graph is: $(\frac{1}{2}, \frac{25}{4})$ $y = \frac{25}{4} - \left(x - \frac{1}{2}\right)^2$ 0 $x = \frac{1}{2}$ $y = x^2 + 3x - 4$ 10 (a) y = 65 (b) *y* = −1 4. (a) Draw the horizontal line y = 6 on the graph of $y = x^2 + 3x - 4$. ∵ The two graphs intersect at x = -5.0 and x = 2.0. .:. The solutions of $x^2 + 3x - 4 = 6$ are x = -5.0 or *x* = 2.0. **(b)** Draw the horizontal line y = -1 on the graph of $y = x^2 + 3x - 4.$ ∵ The two graphs intersect at x = -3.8 and x = 0.8. The solutions of $x^2 + 3x - 4 = -1$ are x = -3.8 or *x* = 0.8. $y = x^3 - 3x^2 + 2x + 1$ 4 3 2 (a) *y* = 1

When x = 0,

109

5.

(b)

- (a) Draw the horizontal line y = 1 on the graph of
 - $y = x^3 3x^2 + 2x + 1$.
 - The two graphs intersect at x = 0.0, x = 1.0 and x = 2.0.
 - ... The solutions of $x^3 3x^2 + 2x + 1 = 1$ are x = 0.0, x = 1.0 or x = 2.0.
- (b) Draw the horizontal line y = -1.4 on the graph of $y = x^3 3x^2 + 2x + 1$.
 - ∵ The two graphs intersect at x = -0.6.
 - :. The solution of $x^3 3x^2 + 2x + 1 = -1.4$ is x = -0.6.

8.

6.

7.

- (a) Draw the horizontal line y = -2 on the graph of $y = -3^x$.
 - \therefore The two graphs intersect at *x* = 0.6.
 - \therefore The solution of $-3^x = -2$ is x = 0.6.
- **(b)** Draw the horizontal line y = 0 on the graph of $y = -3^x$.
 - \because The two graphs do not intersect.
 - \therefore 3^{*x*} = 0 has no real solutions.

- (a) Draw the horizontal line y = -1.5 on the graph of $y = \sin 2x$.
 - The two graphs do not intersect.
 - ∴ For $0^\circ \le x \le 360^\circ$, sin 2x = -1.5 has no real solutions.
- **(b)** Draw the horizontal line y = 0.5 on the graph of $y = \sin 2x$.
 - The two graphs intersect at $x = 18^\circ$, $x = 72^\circ$, $x = 198^\circ$ and $x = 252^\circ$.
 - ∴ For $0^{\circ} \le x \le 360^{\circ}$, the solutions of sin 2x = 0.5 are $x = 18^{\circ}$, $x = 72^{\circ}$, $x = 198^{\circ}$ or $x = 252^{\circ}$.

 $\therefore \text{ The solutions of } x^3 - x^2 - 4x + 1 \le -3 \text{ are}$ $x \le -2 \text{ or } 1 \le x \le 2.$

9.

- **(b)** The graph of y = f(x) is translated downwards by 1 unit to give the graph of y = g(x).
- **13.** (a) The graph of y = f(x) is reflected about the *y*-axis to give the graph of y = g(x).
 - **(b)** The graph of y = f(x) is reflected about the *x*-axis to give the graph of y = g(x).
- **14.** (a) The graph of y = f(x) is enlarged along the *x*-axis to 2 times the original to give the graph of y = g(x).
 - (b) The graph of y = f(x) is enlarged along the *y*-axis to 2 times the original to give the graph of y = g(x).
- **15.** (a) The graph of y = f(x) is reduced along the *x*-axis to $\frac{1}{3}$ times the original to give the graph of y = g(x).
 - **(b)** The graph of y = f(x) is reduced along the *y*-axis to $\frac{1}{3}$ times the original to give the graph of y = g(x).
- **16.** (a) \because The graph of y = g(x) is obtained by translating the graph of $y = x^3$ upwards by 4 units.

$$\therefore g(x) = \underline{x^3 + 4}$$

- (b) ∵ The graph of y = g(x) is obtained by translating the graph of y = x³ rightwards by 4 units.
 ∴ g(x) = (x 4)³
- 17. (a) \because The graph of y = g(x) is obtained by reflecting the graph of $y = x^3$ about the *y*-axis. \therefore $g(x) = (-x)^3$
 - (b) ∵ The graph of y = g(x) is obtained by enlarging the graph of y = x³ along the *y*-axis to 2 times the original.
 ∴ g(x) = 2x³

18. (a) \because The graph of y = g(x) is obtained by reducing the graph of $y = x^3$ along the *x*-axis to $\frac{1}{2}$ times the original. $\therefore g(x) = \underline{(2x)^3}$

(b) \because The graph of y = g(x) is obtained by enlarging the graph of $y = x^3$ along the *x*-axis to 2 times the original.

$$\therefore \quad g(x) = \begin{bmatrix} x \\ 2 \end{bmatrix}^3$$

- **19.** \therefore From the table, we can observe that r(k) = h(k) + 9, where k = -2, -1, 0, 1 and 2.
 - ... The graph of y = r(x) is obtained by translating the graph of y = h(x) upwards by 9 units.

NSS Mathematics in Action (2nd Edition) 6A Full Solutions

- **20.** \therefore The graph of y = g(x) is obtained by translating the graph of $y = -x^2 + 2$ leftwards by 2 units.
 - :. $g(x) = \frac{-(x+2)^2 + 2}{g(x)}$ (or $g(x) = -x^2 - 4x - 2$)
- 21. ∵ The graph of y = g(x) is obtained by reflecting the graph of y = log₃ x about the *x*-axis.
 ∴ g(x) = log₃ x
- **22.** (a) The graph of y = f(x) 2 is obtained by translating the graph of y = f(x) downwards by 2 units.

(b) The graph of y = f(x + 2) is obtained by translating the graph of y = f(x) leftwards by 2 units.

23.
$$\therefore \cos 2x = \cos \left[\frac{1}{2} (4x) \right]$$

... The graph of $y = \cos 2x$ is obtained by enlarging the graph of $y = \cos 4x$ along the *x*-axis to 2 times the original.

Level 2

24. $\tan x + 0.9 = 0$

 $\tan x = -0.9$

∴ For $0^{\circ} \le x \le 360^{\circ}$, the solutions of $\tan x + 0.9 = 0$ are $x = 138^{\circ}$ or $x = 318^{\circ}$.

25.
$$5f(x) - 4 = 0$$

 $5f(x) = 4$

$$f(x) = 0.8$$

Draw the horizontal line y = 0.8 on the graph of y = f(x).

- \therefore The two graphs intersect at x = 0.6 and x = 1.7.
- $\therefore \quad \text{The solutions of } 5f(x) 4 = 0 \text{ are } x = 0.6 \text{ or } x = 1.7.$

26. $5x^2 + 3x - 8 = 0$

 $5x^2 + 3x - 6 = 2$

- ∴ The two graphs intersect at x = -1.6 and x = 1.0. ∴ The solutions of $5x^2 + 3x - 8 = 0$ are x = -1.6 or x = 1.0.
- 27. $4 \cos x < 1$

 $\cos x < 0.25$

Draw the horizontal line y = 0.25 on the graph of $y = \cos x$.

The two graphs intersect at $x = 78^{\circ}$ and $x = 282^{\circ}$. For the range $78^{\circ} < x < 282^{\circ}$, the corresponding part of the graph of $y = \cos x$ lies below the line y = 0.25.

∴ For $0^{\circ} \le x \le 360^{\circ}$, the solutions of $4\cos x < 1$ are $78^{\circ} < x < 282^{\circ}$.

The two graphs intersect at x = 0.85.

For the range x > 0.85, the corresponding part of the

graph of
$$y = \log_{\frac{3}{4}} x$$
 lies below the line $y = 0.6$.

$$\therefore$$
 The solutions of $\frac{5\log_3 x < 3}{\frac{3}{4}}$ are $x > 0.85$.

29.
$$2x^2 - x - 3 > 0$$

 $2x^2 - x - 2 > 1$ Draw the horizontal line y = 1 on the graph of $y = 2x^2 - x - 2$.

The two graphs intersect at x = -1 and x = 1.5. For the ranges x < -1 and x > 1.5, the corresponding parts of the graph of $y = 2x^2 - x - 2$ lie above the line y = 1.

 \therefore The solutions of $2x^2 - x - 3 > 0$ are x < -1 or x > 1.5.

(a) Draw the horizontal line y = 1 on the graph of $y = \sin(x + 45^\circ)$.

NSS Mathematics in Action (2nd Edition) 6A Full Solutions

The two graphs intersect at $x = 45^{\circ}$. When $x = 45^\circ$, the corresponding part of the graph of $y = \sin(x + 45^\circ)$ lies on the line y = 1.

- \therefore For $0^{\circ} \le x \le 360^{\circ}$, the solution of $\sin(x + 45^{\circ}) \ge 1$ is $x = 45^{\circ}$.
- **(b)** Draw the horizontal line y = -1 on the graph of $y = \sin(x + 45^\circ).$ The two graphs intersect at $x = 225^{\circ}$. For the ranges $0^{\circ} \le x < 225^{\circ}$ and $225^{\circ} < x \leq 360^{\circ}$, the corresponding parts of the graph of $y = \sin(x + 45^\circ)$ lie above the line y = -1.
 - \therefore For $0^{\circ} \le x \le 360^{\circ}$, the solutions of $\sin(x + 45^{\circ})$ > -1 are $0^{\circ} \le x < 225^{\circ}$ or $225^{\circ} < x \le 360^{\circ}$, i.e. all real values of *x* except $x = 225^{\circ}$.

(a)

$$\frac{x^4}{2}$$
 - 2x² + 1 ≥1

- $2x^2 \ge 0$

Draw the horizontal line y = 1 on the graph of

$$y = \frac{x^4}{2} - 2x^2 + 1$$

The two graphs intersect at x = -2, x = 0 and x = 2. For the ranges $x \leq -2$, x = 0 and $x \geq 2$, the corresponding parts of the graph of 4

$$y = \frac{x^{2}}{2} - 2x^{2} + 1 \text{ lies on or above the line } y = 1.$$

$$\therefore \text{ The solutions of } \frac{x^{4}}{2} - 2x^{2} \ge 0 \text{ are } x \le -2$$

$$x = 0 \text{ or } x \ge 2.$$

(b)

$$\frac{x^4}{2} - 2x^2 + 2 < 0$$
$$\frac{x^4}{2} - 2x^2 + 1 < -1$$

Draw the horizontal line y = -1 on the graph of

$$y = \frac{x^4}{2} - 2x^2 + 1$$
.

The two graphs intersect at x = -1.4 and x = 1.4. The whole graph of $y = \frac{x^4}{2} - 2x^2 + 1$ lies on or above the line y = -1.

$$\therefore \quad \frac{x^4}{2} - 2x^2 + 2 < 0$$
 has no real solutions.

$$g(x) = (x + 3)^{2}$$
32.
$$= x^{2^{2}} + 6x + 9$$

$$= (x^{2} + 6x + 10) - 1$$

$$= f(x) - 1$$

∴ The graph of y = f(x) is translated downwards by 1 unit to give the graph of y = g(x).

33.
$$g(x) = \cos x - \sin^2 x - x^2$$
$$= -(\sin^2 x - \cos x + x^2)$$
$$= -f(x)$$

... The graph of y = f(x) is reflected about the *x*-axis to give the graph of y = g(x).

$$g(x) = \log_2 x^2$$

34. = 2 log_2 x
= 2 f(x)

... The graph of y = f(x) is enlarged along the *y*-axis to 2 times the original to give the graph of y = g(x).

35. (a) (i)
$$f(x) = (x - 1)(x^2 + 2x + 1)$$

 $= (x - 1)(x + 1)^2$
 $g(x) = x^3 - 2x^2$
 $= x^2(x - 2)$
(ii) $g(x) = x^2(x - 2)$
 $= [(x - 1) - 1][(x - 1) + 1]^2$
 $= f(x - 1)$
∴ The graph of $y = f(x)$ is translated rightwards
by 1 unit to give the graph of $y = g(x)$.

(b) From (a)(ii), the graph of y = g(x) is obtained by translating the graph of y = f(x) rightwards by 1 unit.

The graph of y = g(2x) is obtained by reducing the graph of y = g(x) along the *x*-axis to $\frac{1}{2}$ times the

original.

36. (a) Let the graph of y = f(x) be the graph obtained by reducing the graph of $y = 2(x + 6)^2 + k$ along the *y*-axis to half of the original.

∴
$$f(x) = \frac{1}{2} [2(x+6)^2 + k]$$

= $(x+6)^2 + \frac{k}{2}$

∴ The graph of y = g(x) is obtained by translating the graph of y = f(x) leftwards by 2 units.

$$g(x) = f(x+2)$$

∴ =[(x+2)² + 6]² + $\frac{k}{2}$
=(x+8)² + $\frac{k}{2}$

 \therefore The vertex of the graph of y = g(x) is

$$\begin{bmatrix} -8, \frac{k}{2} \end{bmatrix}$$

$$\therefore \quad h = \underline{-8}$$

$$and \quad -3 = \frac{k}{2}$$

$$k = \underline{-6}$$

(b) From (a), we have

[

$$g(x) = (x+8)^{2} + \frac{-6}{2}$$
$$= (x+8)^{2} - 3$$

37. (a) Let the graph of y = p(x) be the graph obtained by reflecting the graph of y = f(x) about the *x*-axis.

$$\therefore \quad p(x) = -f(x)$$

∴ The graph of y = g(x) is obtained by translating the graph of y = p(x) downwards by 3 units. g(x) = p(x) - 3

∴ =-
$$f(x) - 3$$

=- $(x^3 + 2x^2 + 3x + 4) - 3$
=- $x^3 - 2x^2 - 3x - 7$
∴ $k = 7$

(b) Let the graph of y = p(x) be the graph obtained by translating the graph of y = f(x) downwards by 3 units.

$$\therefore$$
 $p(x) = f(x) - 3$

Let the graph of y = q(x) be the graph obtained by reflecting the graph of y = p(x) about the *x*-axis. q(x) = -p(x)

$$=-[f(x)-3]$$

$$\therefore =-[(x^3+2x^2+3x+4)-3]$$

$$=-x^3-2x^2-3x-1$$

$$\neq g(x)$$

$$\therefore Mary's claim is incorrect.$$

5

38. (a) Let $f(x) = \log_4 x$ and the graph of y = h(x) be the graph obtained by enlarging the graph of y = f(x) along the *x*-axis to 4 times the original.

$$\therefore \quad h(x) = f \begin{bmatrix} x \\ 0 \end{bmatrix}$$

∴ The graph of y = g(x) is obtained by translating the graph of y = h(x) downwards by 2 units.

$$g(x) = h(x) - 2$$

$$\therefore \qquad = f \begin{bmatrix} x \\ 0 \\ 4 \end{bmatrix} - 2$$

$$= \log_4 \frac{x}{4} - 2$$

$$g(x) = \log_4 \frac{x}{4} - 2$$
(b) $= \log_4 x \cdot \log_4 4 - 2$
 $= \log_4 x \cdot 3$
 \therefore The graph of $y = g(x)$ can be obtained by
translating the graph of $y = \log_4 x$ downwards
by 3 units.
 \therefore Peter's claim is correct.
39. (a) When $y = 0$,
 $x^2 \cdot 8x + 15 = 0$
 $(x \cdot 3)(x \cdot 5) = 0$
 $x = 3$ or $x = 5$
 \therefore The x-intercepts of the graph of $y = f(x)$ are 3
and 5.
(b) (i) The graph of $y = f(x)$ is translated rightwards by
1 unit to give the graph of $y = g(x)$.
(ii) The graph of $y = g(x)$ is reflected about the y-axis
to give the graph of $y = h(x)$.
(iii) The graph of $y = g(x)$ is reflected about the y-axis
to give the graph of $y = h(x)$.
(c) $g(-x) = 0$
 $f(-x - 1) = 0$
From (a), the x-intercepts of the graph of $y = f(x)$ are 3
and 5.
 $\therefore -x - 1 = 3$ or $-x - 1 = 5$
 $x = -4$ or $x = -6$
40. (a) Let $f(x) = -x^3 + 3x^2 - x + 1$ and
 $g(x) = x^3 + 3x^2 + x$.
 $g(x) = x^3 + 3x^2 + x$.
 $g(x) = x^3 + 3x^2 + x + 1) - 1$
 $= [-(-x)^3 + 3(-x)^2 - (-x) + 1] - 1$
 $= f(-x) - 1$
 \therefore The graph of $y = -x^3 + 3x^2 - x + 1$ is
reflected about the y-axis, and then translated

- ... The graph of $y = -x^3 + 3x^2 x + 1$ is reflected about the *y*-axis, and then translated downwards by 1 unit to give the graph of $y = x^3 + 3x^2 + x$.
- **(b)** The required graph is:

Multiple Choice Questions (p. 3.80)

1. Answer: B

Both the functions $y = \sin x$ and $y = \cos x$ have the maximum value 1 and the minimum value -1. \therefore I is true.

The graph of $y = \cos x$ is symmetrical about the *y*-axis but

the graph of $y = \sin x$ is not symmetrical about the *y*-axis. \therefore II is not true.

Both the functions $y = \sin x$ and $y = \cos x$ are periodic, and their periods are 360°.

- ∴ III is true.
- \therefore The answer is B.

2. Answer: C

For option C, the function $y = 2^x$ does not have minimum value.

3. Answer: B

 $x^3 - 3x - 1 = 0$

$$x^3 - 3x + 1 = 2$$

The two graphs intersect at x = -1.5, x = -0.3 and x = 1.9.

:. The solutions of $x^3 - 3x - 1 = 0$ are x = -1.5, x = -0.3 or x = 1.9.

4. Answer: C

$$x^3 - 3x < 0$$

$$x^3 - 3x + 1 < 1$$

The two graphs intersect at x = -1.7, x = 0 and x = 1.7. For the ranges x < -1.7 and 0 < x < 1.7, the corresponding parts of the graph of $y = x^3 - 3x + 1$ lie below the line y = 1. \therefore The solutions of $x^3 - 3x < 0$ are x < -1.7 or 0 < x < 1.7. 5. Answer: A

 $2^{x} + 3^{x} - 2 \ge 0$

$$2^{x} + 3^{x} \ge 2$$

Draw the horizontal line y = 2 on the graph of $y = 2^x + 3^x$.

$$y = 2$$

The two graphs intersect at x = 0. For the range $x \ge 0$, the corresponding part of the graph of

 $y = 2^{x} + 3^{x}$ lies on or above the line y = 2.

 \therefore The solutions of $2^x + 3^x - 2 \ge 0$ are $x \ge 0$.

6. Answer: D

$$-x^{2} + 4x + 5 = k$$

$$-x^{2} + 4x + 5 - k = 0(*)$$

If (*) has real solution(s), then
 Δ of (*) ≥0
 $4^{2} - 4(-1)(5 - k) \ge 0$
 $4(5 - k) \ge -16$
 $5 - k \ge -4$
 $k \le 9$

7. Answer: C

 $-f(x) = -(x^3 - 3x)$ For I, $=3x - x^{3}$

$$=g(x)$$

 \therefore Transformation I on the graph of y = f(x) gives the graph of y = g(x). $f(-x) = (-x)^3 - 3(-x)$

=q(x)

 $= -x^3 + 3x$

 \therefore Transformation II on the graph of y = f(x) gives the graph of y = g(x). $3f(x) = 3(x^3 - 3x)$

For III,

$$=3x^3 - 9x$$
$$\neq g(x)$$

 \therefore Transformation III on the graph of y = f(x) does not give the graph of y = g(x).

.:. The answer is C.

8. Answer: D

For I.

: The graph of y = g(x) passes through (-2, 0).

$$\therefore q(-2) = 0$$

$$\therefore \quad f(-2-4) = f(-6) \neq 0$$

$$a(x) \neq f$$

 $g(x) \neq f(x - 4)$

 \therefore I is not true. For II,

The graph of y = g(x) can be obtained by translating the ... graph of y = f(x) leftwards by 4 units.

$$\therefore \quad g(x) = f(x+4)$$

∴ II is true.

For III,

: The graph of y = g(x) can be obtained by reflecting the graph of y = f(x) about the *y*-axis.

- $\therefore \quad g(x) = f(-x)$
- ∴ III is true.
- \therefore The answer is D.

9. Answer: C

Let the graph of y = h(x) be the graph obtained by enlarging the graph of $y = \sin 2x$ along the *x*-axis to 2 times the original.

$$h(x) = \sin 2 \begin{bmatrix} x \\ 0 \end{bmatrix}$$

 $= \sin x$

∴ The graph of y = g(x) is obtained by translating the graph of y = h(x) upwards by 1 unit.

g(x) = h(x) + 1 $= \sin x + 1$

10. Answer: A

÷.

Let the graph of y = h(x) be the graph obtained by translating the graph of y = f(x) downwards by 2 units.

- h(x) = f(x) 2
- ∴ The graph of y = g(x) is obtained by reflecting the graph of y = h(x) about the *x*-axis. g(x) = -h(x)

2

∴ =-[
$$f(x) - 2$$
]
=- $(x^3 + 2x - 2) +$
=- $x^3 - 2x + 4$
∴ $k = 4$

Exam Focus

Exam-type Questions (p. 3.83)

1. Answer: D The graph of y = -f(x - 2) is obtained by translating the graph of y = f(x) rightwards by 2 units and then reflecting about the *x*-axis.

 \therefore The answer is D.

2. Answer: A

2g(x) = f(x) $g(x) = \frac{1}{2}f(x)$

 \therefore The graph of y = g(x) is obtained by reducing the graph

of y = f(x) along the *y*-axis to $\frac{1}{2}$ times the original.

From the graph, *y*-intercept of the graph of y = f(x) is -8.

- \therefore The *y*-intercept of the graph of y = g(x) is -4.
- \therefore A is correct.

3. Answer: C

- The vertex of C_2 is below the vertex of C_1 .
- \therefore *C*₁ must be reduced along the *y*-axis or translated downwards to give *C*₂.
- The *y*-coordinate of the vertex of C_1 is positive and the *y*-coordinate of the vertex of C_2 is 0.
- \therefore C_1 must be translated downwards to give C_2 .
- \therefore The *y*-intercepts of C_1 and C_2 are negative, and the *y*-intercept of C_2 is greater than that of C_1 .
- \therefore C_1 must be reduced along the *y*-axis to give C_2 .
- \therefore The answer is C.

4. Answer: D

The graph can be obtained by reflecting the graph of $y = \cos x$ about the *x*-axis, and then reducing along the *y*-axis to half of the original, and finally enlarging along the *x*-axis to 3 times the original. $\therefore y = -3\cos 2x$

5. Answer: A

For I:

For I: The graph of y = f(x) has three *x*-intercepts. \therefore f(x) = 0 does not have a unique solution. \therefore I is not true. For II: The graph of y = f(x) intersects with the graph of y = k at x = -3, x = -1 and x = 3. \therefore The solutions of f(x) = k are x = -3, x = -1 or x = 3. \therefore II is true. For III: For the ranges x < -3 and -1 < x < 3, the corresponding parts of the graph of y = f(x) lie above the line y = k.

∴ The solutions of f(x) > k are x < -3 or -1 < x < 3.

- \therefore II is not true.
- \therefore The answer is A.

6. (a) Let the graph of
$$y = p(x)$$
 be the graph obtained by translating the graph of $y = f(x)$ upwards by 2 units.

$$p(x) = f(x) + 2$$

∴ The graph of y = g(x) is obtained by translating the graph of y = p(x) rightwards by 5 units. g(x) = p(x - 5)

- **(b)** Let the graph of y = q(x) be the graph obtained by translating the graph of $y = 3^{f(x)}$ upwards by 2 units.
 - $\therefore \quad q(x) = 3^{f(x)} + 2$
 - ∴ The graph of y = h(x) is obtained by translating the graph of y = q(x) rightwards by 5 units. h(x) = q(x - 5)

7. (a) Let the graph of y = h(x) be the graph obtained by reducing the graph of y = f(x) along the *y*-axis to *m* times the original.

$$h(x) = mf(x)$$

∴ The graph of y = g(x) is obtained by translating the graph of y = h(x) leftwards by 2 units. a(x) = h(x + 2)

$$=mf(x+2)$$

$$\therefore = m\{2[(x+2)+6]^2 - 6\}$$

$$= m[2(x+8)^2 - 6]$$

$$=2m(x^{2}+16x+64)-6m$$

$$=2mx^{2}+32mx+122m$$

Also,
$$g(x) = (x+h)^2 - 3$$

= $x^2 + 2hx + h^2 - 3$

$$1 = 2m$$

$$\therefore \qquad m = \frac{1}{\underline{2}}$$

$$2h = 32m$$
and
$$2h = 32\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$

$$h = \underline{8}$$

(b) From (a), $g(x) = (x+8)^2 - 3$

- $\therefore \quad \text{The vertex of the graph of } y = g(x) \text{ is } (-8, -3).$
- : The new graph is opening upwards with the vertex (-4, -6).
- ... The new graph is obtained by translating the graph of y = g(x) downwards by 3 units and then rightwards by 4 units.

Investigation Corner (p. 3.88)

(a)	Transformation I:	The graph of $y = x^2$ is enlarged along the <i>y</i> -axis to 2 times the original to		
		give the graph of $y = 2x^2$.		
	Transformation II:	The graph of $y = 2x^2$ is translated		
		rightwards by 3 units to give the		
		graph of $y = 2(x - 3)^2$.		
	Transformation III:	The graph of $y = 2(x - 3)^2$ is translated upwards by 4 units to give the graph of $y = 2(x - 3)^2 + 4$.		

- (b) (i) (1) Reduce the graph of $y = x^2$ along the *y*-axis to *a* times the original, and then translate leftwards by (-h) units and upwards by *k* units.
 - (2) Reflect the graph of y = x² about the x-axis, and translate leftwards by (-h) units and upwards by k units.
 - (3) Enlarge the graph of y = x² along the *y*-axis to (-*a*) times the original, reflect about the *x*-axis, and translate leftwards by (-*h*) units and upwards by *k* units.
 - (ii) (1) Yes, three transformations are enough.
 - (2) Yes, three transformations are enough.
 - (3) No, four transformations are needed.